NRT1.5/NPF7.3 Functions as a Proton-Coupled H+/K+ Antiporter for K+ Loading into the Xylem in Arabidopsis.
نویسندگان
چکیده
Potassium and nitrogen are essential macronutrients for plant growth and have a positive impact on crop yield. Previous studies have indicated that the absorption and translocation of K+ and NO3- are correlated with each other in plants; however, the molecular mechanism that coordinates K+ and NO3- transport remains unknown. In this study, using a forward genetic approach, we isolated a low-K+-sensitive Arabidopsis thaliana mutant, lks2, that showed a leaf chlorosis phenotype under low-K+ conditions. LKS2 encodes the transporter NRT1.5/NPF7.3, a member of the NRT1/PTR (Nitrate Transporter 1/Peptide Transporter) family. The lks2/nrt1.5 mutants exhibit a remarkable defect in both K+ and NO3- translocation from root to shoot, especially under low-K+ conditions. This study demonstrates that LKS2 (NRT1.5) functions as a proton-coupled H+/K+ antiporter. Proton gradient can promote NRT1.5-mediated K+ release out of root parenchyma cells and facilitate K+ loading into the xylem. This study reveals that NRT1.5 plays a crucial role in K+ translocation from root to shoot and is also involved in the coordination of K+/NO3- distribution in plants.
منابع مشابه
Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1
A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...
متن کاملArabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance.
Nitrate reallocation to plant roots occurs frequently under adverse conditions and was recently characterized to be actively regulated by Nitrate Transporter1.8 (NRT1.8) in Arabidopsis (Arabidopsis thaliana) and implicated as a common response to stresses. However, the underlying mechanisms remain largely to be determined. In this study, characterization of NRT1.5, a xylem nitrate-loading trans...
متن کاملMutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.
Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocy...
متن کاملProtection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress.
Physicochemical similarities between K(+) and Na(+) result in interactions between their homeostatic mechanisms. The physiological interactions between these two ions was investigated by examining aspects of K(+) nutrition in the Arabidopsis salt overly sensitive (sos) mutants, and salt sensitivity in the K(+) transport mutants akt1 (Arabidopsis K(+) transporter) and skor (shaker-like K(+) outw...
متن کاملThe Na(+)/H(+) exchanger SOS1 controls extrusion and distribution of Na(+) in tomato plants under salinity conditions.
Maintaining a high K(+)/Na(+) ratio in the cell cytosol, along with the transport processes implicated in the xylem and phloem loading/unloading of Na(+) in plants (long-distance transport) are key aspects in plant salt tolerance. The Ca(2+)-dependent SOS pathway regulating Na(+) and K(+) homeostasis and long-distance Na(+) transport has been reported in Arabidopsis. However, Arabidopsis might ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 29 8 شماره
صفحات -
تاریخ انتشار 2017